Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
Hum Brain Mapp ; 45(7): e26697, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38726888

RESUMO

Diffusion MRI with free gradient waveforms, combined with simultaneous relaxation encoding, referred to as multidimensional MRI (MD-MRI), offers microstructural specificity in complex biological tissue. This approach delivers intravoxel information about the microstructure, local chemical composition, and importantly, how these properties are coupled within heterogeneous tissue containing multiple microenvironments. Recent theoretical advances incorporated diffusion time dependency and integrated MD-MRI with concepts from oscillating gradients. This framework probes the diffusion frequency, ω $$ \omega $$ , in addition to the diffusion tensor, D $$ \mathbf{D} $$ , and relaxation, R 1 $$ {R}_1 $$ , R 2 $$ {R}_2 $$ , correlations. A D ω - R 1 - R 2 $$ \mathbf{D}\left(\omega \right)-{R}_1-{R}_2 $$ clinical imaging protocol was then introduced, with limited brain coverage and 3 mm3 voxel size, which hinder brain segmentation and future cohort studies. In this study, we introduce an efficient, sparse in vivo MD-MRI acquisition protocol providing whole brain coverage at 2 mm3 voxel size. We demonstrate its feasibility and robustness using a well-defined phantom and repeated scans of five healthy individuals. Additionally, we test different denoising strategies to address the sparse nature of this protocol, and show that efficient MD-MRI encoding design demands a nuanced denoising approach. The MD-MRI framework provides rich information that allows resolving the diffusion frequency dependence into intravoxel components based on their D ω - R 1 - R 2 $$ \mathbf{D}\left(\omega \right)-{R}_1-{R}_2 $$ distribution, enabling the creation of microstructure-specific maps in the human brain. Our results encourage the broader adoption and use of this new imaging approach for characterizing healthy and pathological tissues.


Assuntos
Processamento de Imagem Assistida por Computador , Humanos , Adulto , Processamento de Imagem Assistida por Computador/métodos , Imagem de Difusão por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Masculino , Feminino , Imagem de Tensor de Difusão/métodos , Adulto Jovem
2.
Diagnostics (Basel) ; 14(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38732348

RESUMO

Several breast pathologies can affect the skin, and clinical pathways might differ significantly depending on the underlying diagnosis. This study investigates the feasibility of using diffusion-weighted imaging (DWI) to differentiate skin pathologies in breast MRIs. This retrospective study included 88 female patients who underwent diagnostic breast MRI (1.5 or 3T), including DWI. Skin areas were manually segmented, and the apparent diffusion coefficients (ADCs) were compared between different pathologies: inflammatory breast cancer (IBC; n = 5), benign skin inflammation (BSI; n = 11), Paget's disease (PD; n = 3), and skin-involved breast cancer (SIBC; n = 11). Fifty-eight women had healthy skin (H; n = 58). The SIBC group had a significantly lower mean ADC than the BSI and IBC groups. These differences persisted for the first-order features of the ADC (mean, median, maximum, and minimum) only between the SIBC and BSI groups. The mean ADC did not differ significantly between the BSI and IBC groups. Quantitative DWI assessments demonstrated differences between various skin-affecting pathologies, but did not distinguish clearly between all of them. More extensive studies are needed to assess the utility of quantitative DWI in supplementing the diagnostic assessment of skin pathologies in breast imaging.

3.
Magn Reson Med ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38688865

RESUMO

PURPOSE: To determine whether intravoxel incoherent motion (IVIM) describes the blood perfusion in muscles better, assuming pseudo diffusion (Bihan Model 1) or ballistic motion (Bihan Model 2). METHODS: IVIM parameters were measured in 18 healthy subjects with three different diffusion gradient time profiles (bipolar with two diffusion times and one with velocity compensation) and 17 b-values (0-600 s/mm2) at rest and after muscle activation. The diffusion coefficient, perfusion fraction, and pseudo-diffusion coefficient were estimated with a segmented fit in the gastrocnemius medialis (GM) and tibialis anterior (TA) muscles. RESULTS: Velocity-compensated gradients resulted in a decreased perfusion fraction (6.9% ± 1.4% vs. 4.4% ± 1.3% in the GM after activation) and pseudo-diffusion coefficient (0.069 ± 0.046 mm2/s vs. 0.014 ± 0.006 in the GM after activation) compared to the bipolar gradients with the longer diffusion encoding time. Increased diffusion coefficients, perfusion fractions, and pseudo-diffusion coefficients were observed in the GM after activation for all gradient profiles. However, the increase was significantly smaller for the velocity-compensated gradients. A diffusion time dependence was found for the pseudo-diffusion coefficient in the activated muscle. CONCLUSION: Velocity-compensated diffusion gradients significantly suppress the IVIM effect in the calf muscle, indicating that the ballistic limit is mostly reached, which is supported by the time dependence of the pseudo-diffusion coefficient.

4.
Eur J Radiol ; 173: 111352, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38330534

RESUMO

PURPOSE: Broader clinical adoption of breast magnetic resonance imaging (MRI) faces challenges such as limited availability and high procedural costs. Low-field technology has shown promise in addressing these challenges. We report our initial experience using a next-generation scanner for low-field breast MRI at 0.55T. METHODS: This initial cases series was part of an institutional review board-approved prospective study using a 0.55T scanner (MAGNETOM Free.Max, Siemens Healthcare, Erlangen/Germany: height < 2 m, weight < 3.2 tons, no quench pipe) equipped with a seven-channel breast coil (Noras, Höchberg/Germany). A multiparametric breast MRI protocol consisting of dynamic T1-weighted, T2-weighted, and diffusion-weighted sequences was optimized for 0.55T. Two radiologists with 12 and 20 years of experience in breast MRI evaluated the examinations. RESULTS: Twelve participants (mean age: 55.3 years, range: 36-78 years) were examined. The image quality was diagnostic in all examinations and not impaired by relevant artifacts. Typical imaging phenotypes were visualized. The scan time for a complete, non-abbreviated breast MRI protocol ranged from 10:30 to 18:40 min. CONCLUSION: This initial case series suggests that low-field breast MRI is feasible at diagnostic image quality within an acceptable examination time.


Assuntos
Imageamento por Ressonância Magnética , Imageamento por Ressonância Magnética Multiparamétrica , Humanos , Pessoa de Meia-Idade , Estudos Prospectivos , Sensibilidade e Especificidade , Imageamento por Ressonância Magnética/métodos , Mama/diagnóstico por imagem , Mama/patologia
5.
Nat Immunol ; 25(3): 432-447, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38409259

RESUMO

Central nervous system (CNS)-resident cells such as microglia, oligodendrocytes and astrocytes are gaining increasing attention in respect to their contribution to CNS pathologies including multiple sclerosis (MS). Several studies have demonstrated the involvement of pro-inflammatory glial subsets in the pathogenesis and propagation of inflammatory events in MS and its animal models. However, it has only recently become clear that the underlying heterogeneity of astrocytes and microglia can not only drive inflammation, but also lead to its resolution through direct and indirect mechanisms. Failure of these tissue-protective mechanisms may potentiate disease and increase the risk of conversion to progressive stages of MS, for which currently available therapies are limited. Using proteomic analyses of cerebrospinal fluid specimens from patients with MS in combination with experimental studies, we here identify Heparin-binding EGF-like growth factor (HB-EGF) as a central mediator of tissue-protective and anti-inflammatory effects important for the recovery from acute inflammatory lesions in CNS autoimmunity. Hypoxic conditions drive the rapid upregulation of HB-EGF by astrocytes during early CNS inflammation, while pro-inflammatory conditions suppress trophic HB-EGF signaling through epigenetic modifications. Finally, we demonstrate both anti-inflammatory and tissue-protective effects of HB-EGF in a broad variety of cell types in vitro and use intranasal administration of HB-EGF in acute and post-acute stages of autoimmune neuroinflammation to attenuate disease in a preclinical mouse model of MS. Altogether, we identify astrocyte-derived HB-EGF and its epigenetic regulation as a modulator of autoimmune CNS inflammation and potential therapeutic target in MS.


Assuntos
Astrócitos , Esclerose Múltipla , Animais , Humanos , Camundongos , Anti-Inflamatórios , Modelos Animais de Doenças , Epigênese Genética , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/genética , Inflamação , Proteômica
6.
Brachytherapy ; 23(1): 96-105, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38008648

RESUMO

BACKGROUND AND PURPOSE: The current standard imaging-technique for creating postplans in seed prostate brachytherapy is computed tomography (CT), that is associated with additional radiation exposure and poor soft tissue contrast. To establish a magnetic resonance imaging (MRI) only workflow combining improved tissue contrast and high seed detectability, a deep learning-approach for automatic seed segmentation on MRI-scans was developed. MATERIAL AND METHODS: Patients treated with I-125 seed brachytherapy received a postplan-CT and a 1.5 T MRI-scan on nominal day 30 after implantation. For MRI-based seed visualization, DIXON-sequences were acquired and deep learning-based quantitative susceptibility maps (QSM) were generated from 3D-gradient-echo-sequences from 20 patients. Seed segmentations created on CT served as ground truth. For automatic seed segmentation on MRI, a 3D nnU-net model was trained using QSM and DIXON, both solely and combined. RESULTS: Of the implanted seeds 94.8 ± 2.4% were detected with deep learning automatic segmentation entrained on both QSM and DIXON data. Models trained on the individual sequence data-sets performed worse with detection rates of 87.5 ± 2.6% or 88.6 ± 7.5% for QSM and DIXON respectively. The seed centers identified on CT versus QSM and DIXON were on average 1.8 ± 1.3 mm apart. Postimplant dosimetry for evaluation of positioning inaccuracies revealed only small variations of up to 0.4 ± 4.26 Gy in D90 (dose 90% of the prostate receives) between the standard CT-approach and our MRI-only workflow. CONCLUSION: The proposed deep learning-based MRI-only workflow provided a promisingly accurate and robust seed localization and thus has the potential to compete with current state-of-the-art CT-based postimplant dosimetry in the future.


Assuntos
Braquiterapia , Aprendizado Profundo , Neoplasias da Próstata , Masculino , Humanos , Radioisótopos do Iodo/uso terapêutico , Braquiterapia/métodos , Fluxo de Trabalho , Dosagem Radioterapêutica , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Neoplasias da Próstata/patologia , Imageamento por Ressonância Magnética/métodos , Meios de Contraste
7.
Magn Reson Imaging ; 105: 133-141, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37939973

RESUMO

Maxwell or concomitant fields imprint additional phases on the transverse magnetization. This concomitant phase may cause severe image artifacts like signal voids or distort the quantitative parameters due to the induced intravoxel dephasing. In particular, double diffusion encoding (DDE) schemes with two pairs of bipolar diffusion-weighting gradients separated by a refocusing radiofrequency (RF) pulse are prone to concomitant field-induced artifacts. In this work, a method for reducing concomitant field effects in these DDE sequences based on additional oscillating gradients is presented. These oscillating gradient pulses obtained by constrained optimization were added to the original gradient waveforms. The modified sequences reduced the accumulated concomitant phase without significant changes in the original sequence characteristics. The proposed method was applied to a DDE acquisition scheme consisting of 60 pairs of diffusion wave vectors. For phantom as well as for in vivo experiments, a considerable increase in the signal-to-noise ratio (SNR) was obtained. For phantom measurements with a diffusion weighting of b = 2000 s/mm2 for each of the gradient pairs, an SNR increase of up to 40% was observed for a transversal slice that had a distance of 5 cm from the isocenter. For equivalent slice parameters, in vivo measurements in the brain of a healthy volunteer exhibited an increase in SNR of up to 35% for b = 750 s/mm2 for each weighting. These findings are supported by corresponding simulations, which also predict a positive effect on the SNR. In summary, the presented method leads to an SNR gain without additional RF refocusing pulses.


Assuntos
Artefatos , Encéfalo , Humanos , Encéfalo/diagnóstico por imagem , Razão Sinal-Ruído , Imagens de Fantasmas , Voluntários Saudáveis
8.
Eur Radiol ; 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38099964

RESUMO

OBJECTIVES: To evaluate whether artifacts on contrast-enhanced (CE) breast MRI maximum intensity projections (MIPs) might already be forecast before gadolinium-based contrast agent (GBCA) administration during an ongoing examination by analyzing the unenhanced T1-weighted images acquired before the GBCA injection. MATERIALS AND METHODS: This IRB-approved retrospective analysis consisted of n = 2884 breast CE MRI examinations after intravenous administration of GBCA, acquired with n = 4 different MRI devices at different field strengths (1.5 T/3 T) during clinical routine. CE-derived subtraction MIPs were used to conduct a multi-class multi-reader evaluation of the presence and severity of artifacts with three independent readers. An ensemble classifier (EC) of five DenseNet models was used to predict artifacts for the post-contrast subtraction MIPs, giving as the input source only the pre-contrast T1-weighted sequence. Thus, the acquisition directly preceded the GBCA injection. The area under ROC (AuROC) and diagnostics accuracy scores were used to assess the performance of the neural network in an independent holdout test set (n = 285). RESULTS: After majority voting, potentially significant artifacts were detected in 53.6% (n = 1521) of all breast MRI examinations (age 49.6 ± 12.6 years). In the holdout test set (mean age 49.7 ± 11.8 years), at a specificity level of 89%, the EC could forecast around one-third of artifacts (sensitivity 31%) before GBCA administration, with an AuROC = 0.66. CONCLUSION: This study demonstrates the capability of a neural network to forecast the occurrence of artifacts on CE subtraction data before the GBCA administration. If confirmed in larger studies, this might enable a workflow-blended approach to prevent breast MRI artifacts by implementing in-scan personalized predictive algorithms. CLINICAL RELEVANCE STATEMENT: Some artifacts in contrast-enhanced breast MRI maximum intensity projections might be predictable before gadolinium-based contrast agent injection using a neural network. KEY POINTS: • Potentially significant artifacts can be observed in a relevant proportion of breast MRI subtraction sequences after gadolinium-based contrast agent administration (GBCA). • Forecasting the occurrence of such artifacts in subtraction maximum intensity projections before GBCA administration for individual patients was feasible at 89% specificity, which allowed correctly predicting one in three future artifacts. • Further research is necessary to investigate the clinical value of such smart personalized imaging approaches.

9.
bioRxiv ; 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37987005

RESUMO

Diffusion MRI with free gradient waveforms, combined with simultaneous relaxation encoding, referred to as multidimensional MRI (MD-MRI), offers microstructural specificity in complex biological tissue. This approach delivers intravoxel information about the microstructure, local chemical composition, and importantly, how these properties are coupled within heterogeneous tissue containing multiple microenvironments. Recent theoretical advances incorporated diffusion time dependency and integrated MD-MRI with concepts from oscillating gradients. This framework probes the diffusion frequency, ω, in addition to the diffusion tensor, D, and relaxation, R1, R2, correlations. A D(ω)-R1-R2 clinical imaging protocol was then introduced, with limited brain coverage and 3 mm3 voxel size, which hinder brain segmentation and future cohort studies. In this study, we introduce an efficient, sparse in vivo MD-MRI acquisition protocol providing whole brain coverage at 2 mm3 voxel size. We demonstrate its feasibility and robustness using a well-defined phantom and repeated scans of five healthy individuals. Additionally, we test different denoising strategies to address the sparse nature of this protocol, and show that efficient MD-MRI encoding design demands a nuanced denoising approach. The MD-MRI framework provides rich information that allows resolving the diffusion frequency dependence into intravoxel components based on their D(ω)-R1-R2 distribution, enabling the creation of microstructure-specific maps in the human brain. Our results encourage the broader adoption and use of this new imaging approach for characterizing healthy and pathological tissues.

10.
PLoS One ; 18(10): e0291273, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37796773

RESUMO

PURPOSE: The study aims to develop easy-to-implement concomitant field-compensated gradient waveforms with varying velocity-weighting (M1) and acceleration-weighting (M2) levels and to evaluate their efficacy in correcting signal dropouts and preserving the black-blood state in liver diffusion-weighted imaging. Additionally, we seek to determine an optimal degree of compensation that minimizes signal dropouts while maintaining blood signal suppression. METHODS: Numerically optimized gradient waveforms were adapted using a novel method that allows for the simultaneous tuning of M1- and M2-weighting by changing only one timing variable. Seven healthy volunteers underwent diffusion-weighted magnetic resonance imaging (DWI) with five diffusion encoding schemes (monopolar, velocity-compensated (M1 = 0), acceleration-compensated (M1 = M2 = 0), 84%-M1-M2-compensated, 67%-M1-M2-compensated) at b-values of 50 and 800 s/mm2 at a constant echo time of 70 ms. Signal dropout correction and apparent diffusion coefficients (ADCs) were quantified using regions of interest in the left and right liver lobe. The blood appearance was evaluated using two five-point Likert scales. RESULTS: Signal dropout was more pronounced in the left lobe (19%-42% less signal than in the right lobe with monopolar scheme) and best corrected by acceleration-compensation (8%-10% less signal than in the right lobe). The black-blood state was best with monopolar encodings and decreased significantly (p < 0.001) with velocity- and/or acceleration-compensation. The partially M1-M2-compensated encoding schemes could restore the black-blood state again. Strongest ADC bias occurred for monopolar encodings (difference between left/right lobe of 0.41 µm2/ms for monopolar vs. < 0.12 µm2/ms for the other encodings). CONCLUSION: All of the diffusion encodings used in this study demonstrated suitability for routine DWI application. The results indicate that a perfect value for the level of M1-M2-compensation does not exist. However, among the examined encodings, the 84%-M1-M2-compensated encodings provided a suitable tradeoff.


Assuntos
Imagem de Difusão por Ressonância Magnética , Fígado , Humanos , Reprodutibilidade dos Testes , Fígado/diagnóstico por imagem , Fígado/patologia , Imagem de Difusão por Ressonância Magnética/métodos , Aceleração , Espectroscopia de Ressonância Magnética
11.
Acta Radiol ; 64(11): 2881-2890, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37682521

RESUMO

BACKGROUND: Magnetic resonance imaging (MRI) provides high diagnostic sensitivity for breast cancer. However, MRI artifacts may impede the diagnostic assessment. This is particularly important when evaluating maximum intensity projections (MIPs), such as in abbreviated MRI (AB-MRI) protocols, because high image quality is desired as a result of fewer sequences being available to compensate for problems. PURPOSE: To describe the prevalence of artifacts on dynamic contrast enhanced (DCE) MRI-derived MIPs and to investigate potentially associated attributes. MATERIAL AND METHODS: For this institutional review board approved retrospective analysis, MIPs were generated from subtraction series and cropped to represent the left and right breasts as regions of interest. These images were labeled by three independent raters regarding the presence of MRI artifacts. MRI artifact prevalence and associations with patient characteristics and technical attributes were analyzed using descriptive statistics and generalized linear models (GLMMs). RESULTS: The study included 2524 examinations from 1794 patients (median age 50 years), performed on 1.5 and 3.0 Tesla MRI systems. Overall inter-rater agreement was kappa = 0.54. Prevalence of significant unilateral artifacts was 29.2% (736/2524), whereas bilateral artifacts were present in 37.8% (953/2524) of all examinations. According to the GLMM, artifacts were significantly positive associated with age (odds ratio [OR] = 1.52) and magnetic field strength (OR = 1.55), whereas a negative effect could be shown for body mass index (OR = 0.95). CONCLUSION: MRI artifacts on DCE subtraction MIPs of the breast, as used in AB-MRI, are a relevant topic. Our results show that, besides the magnetic field strength, further associated attributes are patient age and body mass index, which can provide possible targets for artifact reduction.


Assuntos
Artefatos , Neoplasias da Mama , Humanos , Pessoa de Meia-Idade , Feminino , Estudos Retrospectivos , Prevalência , Mama/diagnóstico por imagem , Mama/patologia , Imageamento por Ressonância Magnética/métodos , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/patologia , Meios de Contraste
12.
Z Med Phys ; 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37543450

RESUMO

PURPOSE: This research aims to develop a feature-guided deep learning approach and compare it with an optimized conventional post-processing algorithm in order to enhance the image quality of diffusion-weighted liver images and, in particular, to reduce the pulsation-induced signal loss occurring predominantly in the left liver lobe. METHODS: Data from 40 patients with liver lesions were used. For the conventional approach, the best-suited out of five examined algorithms was chosen. For the deep learning approach, a U-Net was trained. Instead of learning "gold-standard" target images, the network was trained to optimize four image features (lesion CNR, vessel darkness, data consistency, and pulsation artifact reduction), which could be assessed quantitatively using manually drawn ROIs. A quality score was calculated from these four features. As an additional quality assessment, three radiologists rated different features of the resulting images. RESULTS: The conventional approach could substantially increase the lesion CNR and reduce the pulsation-induced signal loss. However, the vessel darkness was reduced. The deep learning approach increased the lesion CNR and reduced the signal loss to a slightly lower extent, but it could additionally increase the vessel darkness. According to the image quality score, the quality of the deep-learning images was higher than that of the images obtained using the conventional approach. The radiologist ratings were mostly consistent with the quantitative scores, but the overall quality ratings differed among the readers. CONCLUSION: Unlike the conventional algorithm, the deep-learning algorithm increased the vessel darkness. Therefore, it may be a viable alternative to conventional algorithms.

13.
Front Neurosci ; 17: 1215400, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37638321

RESUMO

Objective: Functional magnetic resonance imaging (fMRI) visualizes brain structures at increasingly higher resolution and better signal-to-noise ratio (SNR) as field strength increases. Yet, mapping the blood oxygen level dependent (BOLD) response to distinct neuronal processes continues to be challenging. Here, we investigated the characteristics of 7 T-fMRI compared to 3 T-fMRI in the human brain beyond the effect of increased SNR and verified the benefits of 7 T-fMRI in the detection of tiny, highly specific modulations of functional connectivity in the resting state following a motor task. Methods: 18 healthy volunteers underwent two resting state and a stimulus driven measurement using a finger tapping motor task at 3 and 7 T, respectively. The SNR for each field strength was adjusted by targeted voxel size variation to minimize the effect of SNR on the field strength specific outcome. Spatial and temporal characteristics of resting state ICA, network graphs, and motor task related activated areas were compared. Finally, a graph theoretical approach was used to detect resting state modulation subsequent to a simple motor task. Results: Spatial extensions of resting state ICA and motor task related activated areas were consistent between field strengths, but temporal characteristics varied, indicating that 7 T achieved a higher functional specificity of the BOLD response than 3 T-fMRI. Following the motor task, only 7 T-fMRI enabled the detection of highly specific connectivity modulations representing an "offline replay" of previous motor activation. Modulated connections of the motor cortex were directly linked to brain regions associated with memory consolidation. Conclusion: These findings reveal how memory processing is initiated even after simple motor tasks, and that it begins earlier than previously shown. Thus, the superior capability of 7 T-fMRI to detect subtle functional dynamics promises to improve diagnostics and therapeutic assessment of neurological diseases.

14.
Sci Rep ; 13(1): 10549, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37386021

RESUMO

The objective of this IRB approved retrospective study was to apply deep learning to identify magnetic resonance imaging (MRI) artifacts on maximum intensity projections (MIP) of the breast, which were derived from diffusion weighted imaging (DWI) protocols. The dataset consisted of 1309 clinically indicated breast MRI examinations of 1158 individuals (median age [IQR]: 50 years [16.75 years]) acquired between March 2017 and June 2020, in which a DWI sequence with a high b-value equal to 1500 s/mm2 was acquired. From these, 2D MIP images were computed and the left and right breast were cropped out as regions of interest (ROI). The presence of MRI image artifacts on the ROIs was rated by three independent observers. Artifact prevalence in the dataset was 37% (961 out of 2618 images). A DenseNet was trained with a fivefold cross-validation to identify artifacts on these images. In an independent holdout test dataset (n = 350 images) artifacts were detected by the neural network with an area under the precision-recall curve of 0.921 and a positive predictive value of 0.981. Our results show that a deep learning algorithm is capable to identify MRI artifacts in breast DWI-derived MIPs, which could help to improve quality assurance approaches for DWI sequences of breast examinations in the future.


Assuntos
Aprendizado Profundo , Humanos , Pessoa de Meia-Idade , Estudos Retrospectivos , Imagem de Difusão por Ressonância Magnética , Mama/diagnóstico por imagem , Algoritmos
15.
Diagnostics (Basel) ; 13(7)2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-37046460

RESUMO

This study compares the diagnostic performance and image quality of single-shot turbo spin-echo DWI (tseDWI), standard readout-segmented DWI (rsDWI), and a modified rsDWI version (topupDWI) for cholesteatoma diagnostics. Thirty-four patients with newly suspected unilateral cholesteatoma were examined on a 1.5 Tesla MRI scanner. Diagnostic performance was evaluated by calculating and comparing the sensitivity and specificity using histopathological results as the standard of reference. Image quality was independently reviewed by two readers using a 5-point Likert scale evaluating image distortions, susceptibility artifacts, image resolution, lesion conspicuity, and diagnostic confidence. Twenty-five cholesteatomas were histologically confirmed after surgery and originated in the study group. TseDWI showed the highest sensitivity with 96% (95% confidence interval (CI): 88-100%), followed by topupDWI with 92% (95% CI: 81-100%) for both readers. The sensitivity for rsDWI was 76% (95% CI: 59-93%) for reader 1 and 84% (95% CI: 70-98%) for reader 2, respectively. Both tseDWI and topupDWI revealed a specificity of 100% (95% CI: 66-100%) and rsDWI of 89% (95% CI: 52-100%). Both tseDWI and topupDWI showed fewer image distortions and susceptibility artifacts compared to rsDWI. Image resolution was consistently rated best for topupDWI, followed by rsDWI, which both outperformed tseDWI. TopupDWI and tseDWI showed comparable results for lesions' conspicuity and diagnostic confidence, both outperforming rsDWI. Modified readout-segmented DWI using the topup-correction method is preferable to standard rsDWI and may be regarded as an accurate alternative to single-shot turbo spin-echo DWI in cholesteatoma diagnostics.

16.
Magn Reson Med ; 90(1): 270-279, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36861449

RESUMO

PURPOSE: Studies on intravoxel incoherent motion (IVIM) imaging in the liver have been carried out with different acquisition protocols. The number of acquired slices and the distances between slices can influence IVIM measurements due to saturation effects, but these effects have often been disregarded. This study investigated differences in biexponential IVIM parameters between two slice settings. METHODS: Fifteen healthy volunteers (21-30 years) were examined at a field strength of 3 T. Diffusion-weighted images of the abdomen were acquired with 16 b values (0-800 s/mm2 ), with four slices for the few slices setting and 24-27 slices for the many slices setting. Regions of interest were manually drawn in the liver. The data were fitted with a monoexponential signal curve and a biexponential IVIM curve, and biexponential IVIM parameters were determined. The dependence on the slice setting was assessed with Student's t test for paired samples (normally distributed IVIM parameters) and the Wilcoxon signed-rank test (non-normally distributed parameters). RESULTS: None of the parameters were significantly different between the settings. For few slices and many slices, respectively, the mean values (SDs) for D $$ D $$ were 1.21 µm 2 / ms $$ 1.21{\upmu \mathrm{m}}^2/\mathrm{ms} $$ ( 0.19 µm 2 / ms $$ 0.19\kern0.3em {\upmu \mathrm{m}}^2/\mathrm{ms} $$ ) and 1.20 µm 2 / ms $$ 1.20{\upmu \mathrm{m}}^2/\mathrm{ms} $$ ( 0.11 µm 2 / ms $$ 0.11\kern0.3em {\upmu \mathrm{m}}^2/\mathrm{ms} $$ ); for f $$ f $$ they were 29.7% (6.2%) and 27.7% (3.6%); and for D * $$ {D}^{\ast } $$ they were 8.76 ⋅ 10 - 2 mm 2 / s $$ 8.76\cdot {10}^{-2}{\mathrm{mm}}^2/\mathrm{s} $$ ( 4.54 ⋅ 10 - 2 mm 2 / s $$ 4.54\cdot {10}^{-2}\kern0.3em {\mathrm{mm}}^2/\mathrm{s} $$ ) and 8.71 ⋅ 10 - 2 mm 2 / s $$ 8.71\cdot {10}^{-2}{\mathrm{mm}}^2/\mathrm{s} $$ ( 4.06 ⋅ 10 - 2 mm 2 / s $$ 4.06\cdot {10}^{-2}\kern0.3em {\mathrm{mm}}^2/\mathrm{s} $$ ). CONCLUSION: Biexponential IVIM parameters in the liver are comparable among IVIM studies that use different slice settings, with mostly negligible saturation effects. However, this may not hold for studies that use much shorter TR.


Assuntos
Abdome , Fígado , Humanos , Fígado/diagnóstico por imagem , Movimento (Física) , Abdome/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Imagem de Difusão por Ressonância Magnética/métodos
17.
Ther Adv Neurol Disord ; 16: 17562864221143834, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36846471

RESUMO

Background: Due to the absence of robust biomarkers, and the low sensitivity and specificity of routine imaging techniques, the differential diagnosis between Parkinson's disease (PD) and multiple system atrophy (MSA) is challenging. High-field magnetic resonance imaging (MRI) opened up new possibilities regarding the analysis of pathological alterations associated with neurodegenerative processes. Recently, we have shown that quantitative susceptibility mapping (QSM) enables visualization and quantification of two major histopathologic hallmarks observed in MSA: reduced myelin density and iron accumulation in the basal ganglia of a transgenic murine model of MSA. It is therefore emerging as a promising imaging modality on the differential diagnosis of Parkinsonian syndromes. Objectives: To assess QSM on high-field MRI for the differential diagnosis of PD and MSA. Methods: We assessed 23 patients (nine PDs and 14 MSAs) and nine controls using QSM on 3T and 7T MRI scanners at two academic centers. Results: We observed increased susceptibility in MSA at 3T in prototypical subcortical and brainstem regions. Susceptibility measures of putamen, pallidum, and substantia nigra reached excellent diagnostic accuracy to separate both synucleinopathies. Increase toward 100% sensitivity and specificity was achieved using 7T MRI in a subset of patients. Magnetic susceptibility correlated with age in all groups, but not with disease duration in MSA. Sensitivity and specificity were particularly high for possible MSA, and reached 100% in the putamen. Conclusion: Putaminal susceptibility measures, in particular on ultra-high-field MRI, may distinguish MSA patients from both, PD and controls, allowing an early and sensitive diagnosis of MSA.

18.
Med Image Anal ; 84: 102700, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36529002

RESUMO

Deep learning based Quantitative Susceptibility Mapping (QSM) has shown great potential in recent years, obtaining similar results to established non-learning approaches. Many current deep learning approaches are not data consistent, require in vivo training data or solve the QSM problem in consecutive steps resulting in the propagation of errors. Here we aim to overcome these limitations and developed a framework to solve the QSM processing steps jointly. We developed a new hybrid training data generation method that enables the end-to-end training for solving background field correction and dipole inversion in a data-consistent fashion using a variational network that combines the QSM model term and a learned regularizer. We demonstrate that NeXtQSM overcomes the limitations of previous deep learning methods. NeXtQSM offers a new deep learning based pipeline for computing quantitative susceptibility maps that integrates each processing step into the training and provides results that are robust and fast.


Assuntos
Encéfalo , Aprendizado Profundo , Humanos , Imageamento por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos , Mapeamento Encefálico/métodos , Algoritmos
19.
NMR Biomed ; 36(6): e4717, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-35194865

RESUMO

The objective of the current study was to optimize the postprocessing pipeline of 7 T chemical exchange saturation transfer (CEST) imaging for reproducibility and to prove this optimization for the detection of age differences and differences between patients with Parkinson's disease versus normal subjects. The following 7 T CEST MRI experiments were analyzed: repeated measurements of a healthy subject, subjects of two age cohorts (14 older, seven younger subjects), and measurements of 12 patients with Parkinson's disease. A slab-selective, B 1 + -homogeneous parallel transmit protocol was used. The postprocessing, consisting of motion correction, smoothing, B 0 -correction, normalization, denoising, B 1 + -correction and Lorentzian fitting, was optimized regarding the intrasubject and intersubject coefficient of variation (CoV) of the amplitudes of the amide pool and the aliphatic relayed nuclear Overhauser effect (rNOE) pool within the brain. Seven "tricks" for postprocessing accomplished an improvement of the mean voxel CoV of the amide pool and the aliphatic rNOE pool amplitudes of less than 5% and 3%, respectively. These postprocessing steps are: motion correction with interpolation of the motion of low-signal offsets (1) using the amide pool frequency offset image as reference (2), normalization of the Z-spectrum using the outermost saturated measurements (3), B 0 correction of the Z-spectrum with moderate spline smoothing (4), denoising using principal component analysis preserving the 11 highest intensity components (5), B 1 + correction using a linear fit (6) and Lorentzian fitting using the five-pool fit model (7). With the optimized postprocessing pipeline, a significant age effect in the amide pool can be detected. Additionally, for the first time, an aliphatic rNOE contrast between subjects with Parkinson's disease and age-matched healthy controls in the substantia nigra is detected. We propose an optimized postprocessing pipeline for CEST multipool evaluation. It is shown that by the use of these seven "tricks", the reproducibility and, thus, the statistical power of a CEST measurement, can be greatly improved and subtle changes can be detected.


Assuntos
Doença de Parkinson , Humanos , Reprodutibilidade dos Testes , Doença de Parkinson/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Encéfalo , Amidas
20.
NMR Biomed ; 36(6): e4697, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-35067998

RESUMO

Isolated evaluation of multiparametric in vivo chemical exchange saturation transfer (CEST) MRI often requires complex computational processing for both correction of B0 and B1 inhomogeneity and contrast generation. For that, sufficiently densely sampled Z-spectra need to be acquired. The list of acquired frequency offsets largely determines the total CEST acquisition time, while potentially representing redundant information. In this work, a linear projection-based multiparametric CEST evaluation method is introduced that offers fast B0 and B1 inhomogeneity correction, contrast generation and feature selection for CEST data, enabling reduction of the overall measurement time. To that end, CEST data acquired at 7 T in six healthy subjects and in one brain tumor patient were conventionally evaluated by interpolation-based inhomogeneity correction and Lorentzian curve fitting. Linear regression was used to obtain coefficient vectors that directly map uncorrected data to corrected Lorentzian target parameters. L1-regularization was applied to find subsets of the originally acquired CEST measurements that still allow for such a linear projection mapping. The linear projection method allows fast and interpretable mapping from acquired raw data to contrast parameters of interest, generalizing from healthy subject training data to unseen healthy test data and to the tumor patient dataset. The L1-regularization method shows that a fraction of the acquired CEST measurements is sufficient to preserve tissue contrasts, offering up to a 2.8-fold reduction of scan time. Similar observations as for the 7-T data can be made for data from a clinical 3-T scanner. Being a fast and interpretable computation step, the proposed method is complementary to neural networks that have recently been employed for similar purposes. The scan time acceleration offered by the L1-regularization ("CEST-LASSO") constitutes a step towards better applicability of multiparametric CEST protocols in a clinical context.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética Multiparamétrica , Humanos , Redes Neurais de Computação , Imageamento por Ressonância Magnética Multiparamétrica/métodos , Neoplasias Encefálicas/diagnóstico por imagem , Encéfalo/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...